- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Xin (2)
-
Qian, Xiaoshi (2)
-
Zhang, Q. M. (2)
-
Zhu, Lei (2)
-
Bernholc, J. (1)
-
Domingues Dos Santos, Fabrice (1)
-
Li, Bo (1)
-
Li, Ruipeng (1)
-
Lu, Wenchang (1)
-
Qin, Hancheng (1)
-
Zhang, Bing (1)
-
Zhang, Shihai (1)
-
Zhu, Wenyi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ferroelectric materials are currently some of the most widely applied material systems and are constantly generating improved functions with higher efficiencies. Advancements in poly(vinylidene fluoride) (PVDF)–based polymer ferroelectrics provide flexural, coupling-efficient, and multifunctional material platforms for applications that demand portable, lightweight, wearable, and durable features. We highlight the recent advances in fluoropolymer ferroelectrics, their energetic cross-coupling effects, and emerging technologies, including wearable, highly efficient electromechanical actuators and sensors, electrocaloric refrigeration, and dielectric devices. These developments reveal that the molecular and nanostructure manipulations of the polarization-field interactions, through facile defect biasing, could introduce enhancements in the physical effects that would enable the realization of multisensory and multifunctional wearables for the emerging immersive virtual world and smart systems for a sustainable future.more » « less
An official website of the United States government
